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Abstract

A graph G is k-stepwise irregular if |dg(u) — dg(v)| = k holds for every edge
uv of G. Tt is proved that for such a graph m(G) < (n(G)? — k?)/4 holds, where
the equality holds if and only if G =2 Kn@)+k ne)—x. Using this result, sharp

2 ) 2
lower and upper bounds are derived for Zagreb (co)indices, the Sombor index,
and the Randi¢ index of k-stepwise irregular graphs.
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1 Introduction

In 2018, Gutman [18] introduced stepwise irreqular graphs as the graphs G for which the
degrees of every two adjacent vertices u and v differ by one, that is, |dg(u) —dg(v)| = 1,
where dg(w) is the degree of the vertex w of G, see also [2, 4, 13|. (For a related
concept of stepwise transmission irregular graphs see [8, 9, 16].) Stepwise irregular

graphs naturally extend to k-stepwise irreqular graphs, k > 1, defined as the graphs G



in which |dg(u) —dg(v)| = k holds for every edge uv. This extension was suggested for
the first time in [15], where the focus was on k = 2. This was followed by the article |7]
in which k-stepwise irregular graphs were explored for any k. One motivation behind
the concept of k-stepwise irregular graphs is that this represents a new approach to
analysis and understanding networks with predictable robustness or imbalance.

In the seminal paper |7] it was demonstrated that for any k£ > 1 and any d > 2, there
exists a k-stepwise irregular graph of diameter d. Bounds for the maximum degree and
for the size of k-stepwise irregular graphs were also proved. In this note we continue
the investigation of k-stepwise irregular graphs by re-focusing on their maximum size
and on their degree-based topological indices.

At this point, it is also necessary to mention a very similar concept, namely the
irregularity of a graph G which was in [5] introduced as }_,  p(g) lda(uw) — da(v)| [5].
Clearly, if G is a k-stepwise irregular graph, then its irregularity is straightforward,
that is, it is equal to k- |E(G)|. Among the numerous studies dealing with graph
irregularity let us point to the papers [1, 11]. The book [6] offers a broad overview of
the irregularity theory of graphs.

We proceed as follows. In the next section we prove an upper bound on the size of
these graphs and detect the graphs that attain the equality. In the subsequent section,
we use this bound to obtain sharp lower and upper bounds for Zagreb (co)indices, the
Sombor index, and the Randi¢ index of k-stepwise irregular graphs. In the rest of the
introduction we list some additional definitions needed and recall an earlier result to
be applied several times later on.

Let G be a graph. Its order and size are respectively denoted by n(G) and m(G).
When G will be clear from the context, we may simplify the notation dg(u) to d(u).
The number of distinct degrees in G is denoted by Cy(G), and the maximum degree in
G by A(G). We will abbreviate the term k-stepwise irregular graph to k-SI graph.

We conclude the introduction by recalling the following result which was for the

special case k = 2 earlier proved in [15, Theorem 3.

Lemma 1.1 [7] Every k-SI graph is bipartite.



2 A bound on the size

In this section, we prove an upper bound on the size of k-SI graphs. We then compare
this bound with the previously known bound from [7] and demonstrate that the two
bonds are incomparable already within the context of the family of trees, that is, each

of the two limits is better in certain cases. The new bound reads as follows.

Theorem 2.1 If k> 1, and G is a connected k-SI graph, then

2 _ /{52
m(G) < &7
4
where the equality holds if and only if G = Kn6)+k nc)—k -
2 ’ 2

Proof. Let A; = {v: dg(v) = A(G) — ik} and set a; = |A4;|. Since G is a k-SI graph,
{A;: 0<1i<Cy(G)—1} is a partition of V(G), that is,

Ca(G)—1

Z a; =n(G).

1=0

We can therefore calculate as follows:

Cy(@)-1
2m(G) = Y a(A(G) —ik)
=0
Ca(G)—-1 Cq(G)—1
= AG) > ai—kay— Y (ika;)
=0 1=2

< A(G)n(G) — kay .

A vertex from Ay has all its neighbors in A, hence a; > A(G), and therefore,
m(G) < A(G)n(g}’) — kay < A(G)n(G; — kA(G) | 1)

with equality holds if and only if Cy4(G) = 2 and a1 = A(G). Consider now an edge

vw, where v € Ay and w € A;. Then by Lemma 1.1, dg(v) + dg(w) < n(G) and

dg(v) — dg(w) = k. Since dg(v) = A(G), summing these two (

2A(G) — k < n(G), that is, A(G) < (n(G) + k)/2. Using this in (

m(@) < 2OMEC) =k) _ (n(G) +R)(n(G) k)
o 2 - 4 9

in)equalities we get

1) we obtain




where equality holds if and only if a; = A(G) = ”(Gz)+k and Cy(G) = 2. Consequently

ap = n(G) —a; = W We can conclude that the equality holds if and only if

G = Knek n@)—k- OJ
2 ) 2

We now compare the bound of Theorem 2.1 with [7, Theorem 5.1] which asserts
that if £ > 1, and G is a connected k-SI graph, then
G)? — k?
m(c) < "R )
where the equality holds if and only if G = Ku@+k ne—k.

We next compare (2) with the bound of Theorem 2.1 on the class of trees. Hence
let T be an arbitrary k-SI tree with. Then it follows that A(T") = (Cy—1)k+ 1. In the
special case where Cy(T") = 2, we obtain T = K 441, and in this situation both bounds
coincide. Assume now that & < n(7) — 1, set m = m(7T), A = A(T), and consider the

following two functions defined for positive integers n = n(7T) and k:

n2—k2
f(nak) - 4 )
_ nA(A—-k) B

The equality between f and g occurs precisely when n = 2A — k. Since A = mk + 1,
for some m € N, this equality point can be expressed as neq = (2m — 1)k + 2.

To compare the size of the two functions, we observe the following cases:
e For n < 2A — k, the quadratic growth of g dominates, so f(n,k) < g(n, k).
e For n = 2A — k, the two functions coincide, therefore f(n, k) = g(n, k).

e For n > 2A — k, the quadratic growth of f dominates, so f(n,k) > g(n, k).

3 Bounds on Zagreb (co)indices

Zagreb indices represent one of the most fundamental classes of topological descriptors

in mathematical chemistry, with their properties being extensively investigated since



the introduction of the first Zagreb index M; in 1972 [21]. M, and its variant, the
second Zagreb index My, are defined for a given graph G as

M(G)= > (d(u)+d(v)),

weE(G)

My(G)= Y du)d(v).
weE(G)
A huge number of lower and upper bounds for M; and M, have been proved, the
survey [12] which focuses just on lower and upper bounds for M; and M, contains more
than 80 pages and lists 118 references. In this section we add to this list bounds on M;

and M, for k-SI graphs, as well as bounds on the corresponding Zagreb coincides [17]
which are defined by:

M(G)= Y (du)+d(v),

wéE(QG)

My(G)= > d(ud(v).

uwé¢E(G)
Theorem 3.1 If k> 1 and G is a connected k-SI graph, then

n(G)* — k?

(k+2)(n(G) ~ 1) < M(G) < n(G) ",

and )
n(G)* — k?
1 :
Moreover, in both cases the left equality holds if and only if G = K 11 and the right

equality holds if and only of G = Kn6)+k nc)—k -
2 ’ 2

w+DWQ—USMﬂns(

Proof. We first consider M;. Since d(u) + d(v) > k + 2 for each edge uv, we have:

M(G)= > (d(u)+d(v)) > (k+2)m(G).

weER(G)

Since G is connected, m(G) > n(G) — 1, hence the left inequality. Further, the equality
holds if and only if G is a k-SI tree and for each edge uv we have |d(u) — d(v)| = k and



d(u) + d(v) = k + 2. Therefore, d(u) = k4 1 and d(v) = 1 (or the other way around),
which in turn implies G = K 1.

Let uv be an edge of G and assume without loss of generality that d(u) —d(v) = k.
Lemma 1.1 implies d(u) + d(v) < n(G). From here, we get d(u) < W and d(v) <

W and therefore,

Mi(G) = > (dw)+d(v)) <n(G)m(G).

weE(G)

Then, by Theorem 2.1, M;(G) < n(G)("(GLﬂ, where the equality holds if and only
if G =2 Kuc+r n@—-kr. This proves the theorem for M.
2 ’ 2
Consider now M, and let uv be an edge of G with d(u) > d(v). Then as in (i) we

have d(u) + d(v) < n(G) and d(u) — d(v) = k. The latter equality yields

Since the function f(z) = 2% — kx is an increasing function on x > k/2, by considering
E+1<du)< W we get

(k4 D)k + 1 — k)m(G) < My(G) < (”(G) + k) (”“’2* i k) m(G).

2
Therefore, by Theorem 2.1,

(k4 )@ -1 < 3(6) < (M=)

By similar arguments as for M; we finally infer that the left equality holds if and only
it G = K ;41 and the right equality holds if and only if G = K ;. O

To derive bounds for the two Zagreb coindices, we recall the following result.

Theorem 3.2 20| If G is a graph, then

and



The bounds for the Zagreb coindices of k-SI graphs now read as follows.

Theorem 3.3 If k > 1 and G is a k-SI graph, with n = n(G) and m = m(G), then

(n—2)(n—1) < M(G) < (2n — k — 4) (n ;k)

and

2m2—%(2n+n2—k2) < My(G) <2m? — (n—1) (gk—i—?) :

Moreover, for My, both equalities hold if and only if G = K 341, while the left equality
for My holds if and only if G = KnTJrk’nT—k, and the right equality for My holds if and
only if G = K 1.

Proof. Consider first M. Since for each edge uv we have d(u) + d(v) < n(G), we get
M, (G) < n(G)m(G). Then by the first equality of Theorem 3.2,

M.(G) = 2(n(G) — D)m(G) — My(G)
2(n(G) — DYm(G) — n(G)m(G) = (n(G) — 2)m(G).

G, being connected, satisfies m(G) > n(G) — 1, hence
My(G) = (n(G) = 2)(n(G) - 1).

Equality holds if and only if G is a star graph, which is the case when m(G) = n(G)—1
and M;(G) = n(G)m(G).
For the upper bound, using the bound M;(G) > (k + 2)m(G) of Theorem 3.1, we
get
M (G) <2(n(G) — 1)m(G) — (k +2)m(G) = m(G)(2n(G) — k — 4) .

Hence the right inequality holds by the upper bound in Theorem 2.1. Equality holds
if and only if G is both a tree and a complete bipartite graph, which occurs precisely
when G = Kl,k—‘rl'

Consider second M,. Applying Lemma 1.1 again to an arbitrary edge uv we have

du) +d(v) <n(G) and d(u)d(v) < W (3)



This implies M;(G) < n(G)m(G) and My(G) < "(G)jkam(G). Applying the second

identity of Theorem 3.2, we get

MAG) > 22(G) - tn(@ym(@) - "L =)
_ (G — m(G)n(G) + ZZ(G) —k ‘

The equality holds if and only if both equalities in (3) hold for each edge, which is if
and only if GG is the complete bipartite graph Kn)+x nic)—k -
2 b
By Theorem 3.1,

2

M (G) > (k+2)(n(G) —1) and My(G) > (k+1)(n(G) —1).

Hence the right inequality is obtained by applying the second identity of Theorem 3.2:

— 1
M(G) < 2m(G)° = 5 ((G) = 1)(k+2) = (n(G) = 1)(k+ 1),
and the equality holds if and only if G = K ;4. U

4 Bounds on the Sombor and the Randié index

The Sombor index of a graph G, introduced by Gutman in 2021 in [19], is defined as
SOG) = > d(u)?+d(v).
weE(G)

This graph invariant immediately received considerable attention, only a year after the
seminal paper the survey paper [22| on it was published. The extraordinary interest in
the Sombor index continues unabated, see, for example [3, 14, 24]. To this development

we add the following result.

Theorem 4.1 If k> 1 and G is a k-SI graph, then

(k+1)v/(E+1)241<SO(G) < (n(G)2 — k2) n(G) + K .

4 2
Moreover, the left equality holds if and only if G = K 41 and the right equality holds
if and only if G = Knik nok.



Proof. Let uv be an edge of G where d(u) — d(v) = k. Thus

d(u)? 4+ d(v)? = 2d(u)* — 2kd(u) + k*.

[STES

The function f(z) = 22? + k* — 2kz is an increasing function for = > Since

kE+1<d(u) < "(GZ)%, we derive the bounds:

m(@)/E+ 12 11 < S0(G) < m(c;)\/(wy + (@)Q

Applying Theorem 2.1, the upper bound follows, while the lower bound follows since
m(G) >n(G) —1> (k+2) —1=k+ 1. Moreover, the left equality holds if and only
if m(G) =n(G) —1=k+1 and for each edge one endvertex is of degree k + 1. This

implies G = K 41. A similar argument applies to the sharpness of the upper bound.
O

The Randié¢ index [23] is one of the oldest and most widely applicable topological

indices, it is defined as follows:

1
R(G) = S —
M,GZE(G) Vd(u)d(v)

Also this index is still the subject of considerable interest; see, for example, articles [10,

25, 26] and the references therein. Our contribution is the following result.

Theorem 4.2 If k> 1 and G is a k-SI graph, then

2(k + 1) n(G)? — k?
n(G)? — k2 <RE) < AVk +1

Moreover, both equalities hold if and only if G = K j41.

Proof. Let uv be an edge of G, and assume without loss of generality that d(u)—d(v) =
k. Using analogous arguments as in the second part of the proof of Theorem 3.1, that
is, to prove the bounds on My(G), we obtain

n(G)+k n(G) -k

k+1<d(u)d(v) < 5




This implies
1 1
G)————— < R(G) < m(G )
m(G) 5 = (G) <m(G) —
4

Since m(G) > k + 1, the lower bound follows, while the upper bound follows by the

reuse of Theorem 2.1. We also notice that both the lower and the upper bound are
sharp and the equalities hold when G = K ;4. 0]
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