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Abstract

A graph G is k-stepwise irregular if |dG(u)− dG(v)| = k holds for every edge

uv of G. It is proved that for such a graph m(G) ≤ (n(G)2 − k2)/4 holds, where

the equality holds if and only if G ∼= Kn(G)+k
2

,
n(G)−k

2

. Using this result, sharp

lower and upper bounds are derived for Zagreb (co)indices, the Sombor index,

and the Randi¢ index of k-stepwise irregular graphs.
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1 Introduction

In 2018, Gutman [18] introduced stepwise irregular graphs as the graphsG for which the

degrees of every two adjacent vertices u and v di�er by one, that is, |dG(u)−dG(v)| = 1,

where dG(w) is the degree of the vertex w of G, see also [2, 4, 13]. (For a related

concept of stepwise transmission irregular graphs see [8, 9, 16].) Stepwise irregular

graphs naturally extend to k-stepwise irregular graphs, k ≥ 1, de�ned as the graphs G
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in which |dG(u)−dG(v)| = k holds for every edge uv. This extension was suggested for

the �rst time in [15], where the focus was on k = 2. This was followed by the article [7]

in which k-stepwise irregular graphs were explored for any k. One motivation behind

the concept of k-stepwise irregular graphs is that this represents a new approach to

analysis and understanding networks with predictable robustness or imbalance.

In the seminal paper [7] it was demonstrated that for any k ≥ 1 and any d ≥ 2, there

exists a k-stepwise irregular graph of diameter d. Bounds for the maximum degree and

for the size of k-stepwise irregular graphs were also proved. In this note we continue

the investigation of k-stepwise irregular graphs by re-focusing on their maximum size

and on their degree-based topological indices.

At this point, it is also necessary to mention a very similar concept, namely the

irregularity of a graph G which was in [5] introduced as
∑

uv∈E(G) |dG(u) − dG(v)| [5].
Clearly, if G is a k-stepwise irregular graph, then its irregularity is straightforward,

that is, it is equal to k · |E(G)|. Among the numerous studies dealing with graph

irregularity let us point to the papers [1, 11]. The book [6] o�ers a broad overview of

the irregularity theory of graphs.

We proceed as follows. In the next section we prove an upper bound on the size of

these graphs and detect the graphs that attain the equality. In the subsequent section,

we use this bound to obtain sharp lower and upper bounds for Zagreb (co)indices, the

Sombor index, and the Randi¢ index of k-stepwise irregular graphs. In the rest of the

introduction we list some additional de�nitions needed and recall an earlier result to

be applied several times later on.

Let G be a graph. Its order and size are respectively denoted by n(G) and m(G).

When G will be clear from the context, we may simplify the notation dG(u) to d(u).

The number of distinct degrees in G is denoted by Cd(G), and the maximum degree in

G by ∆(G). We will abbreviate the term k-stepwise irregular graph to k-SI graph.

We conclude the introduction by recalling the following result which was for the

special case k = 2 earlier proved in [15, Theorem 3].

Lemma 1.1 [7] Every k-SI graph is bipartite.
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2 A bound on the size

In this section, we prove an upper bound on the size of k-SI graphs. We then compare

this bound with the previously known bound from [7] and demonstrate that the two

bonds are incomparable already within the context of the family of trees, that is, each

of the two limits is better in certain cases. The new bound reads as follows.

Theorem 2.1 If k ≥ 1, and G is a connected k-SI graph, then

m(G) ≤ n(G)2 − k2

4
,

where the equality holds if and only if G ∼= Kn(G)+k
2

,
n(G)−k

2

.

Proof. Let Ai = {v : dG(v) = ∆(G)− ik} and set ai = |Ai|. Since G is a k-SI graph,

{Ai : 0 ≤ i ≤ Cd(G)− 1} is a partition of V (G), that is,

Cd(G)−1∑
i=0

ai = n(G) .

We can therefore calculate as follows:

2m(G) =

Cd(G)−1∑
i=0

ai(∆(G)− ik)

= ∆(G)

Cd(G)−1∑
i=0

ai − ka1 −
Cd(G)−1∑

i=2

(ikai)

≤ ∆(G)n(G)− ka1 .

A vertex from A0 has all its neighbors in A1, hence a1 ≥ ∆(G), and therefore,

m(G) ≤ ∆(G)n(G)− ka1
2

≤ ∆(G)n(G)− k∆(G)

2
, (1)

with equality holds if and only if Cd(G) = 2 and a1 = ∆(G). Consider now an edge

vw, where v ∈ A0 and w ∈ A1. Then by Lemma 1.1, dG(v) + dG(w) ≤ n(G) and

dG(v) − dG(w) = k. Since dG(v) = ∆(G), summing these two (in)equalities we get

2∆(G)− k ≤ n(G), that is, ∆(G) ≤ (n(G) + k)/2. Using this in (1) we obtain

m(G) ≤ ∆(G)(n(G)− k)

2
≤ (n(G) + k)(n(G)− k)

4
,
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where equality holds if and only if a1 = ∆(G) = n(G)+k
2

and Cd(G) = 2. Consequently

a0 = n(G) − a1 = n(G)−k
2

. We can conclude that the equality holds if and only if

G ∼= Kn(G)+k
2

,
n(G)−k

2

. □

We now compare the bound of Theorem 2.1 with [7, Theorem 5.1] which asserts

that if k ≥ 1, and G is a connected k-SI graph, then

m(G) ≤ n(G)2 − k2

4
, (2)

where the equality holds if and only if G ∼= Kn(G)+k
2

,
n(G)−k

2

.

We next compare (2) with the bound of Theorem 2.1 on the class of trees. Hence

let T be an arbitrary k-SI tree with. Then it follows that ∆(T ) = (Cd−1)k+1. In the

special case where Cd(T ) = 2, we obtain T ∼= K1,k+1, and in this situation both bounds

coincide. Assume now that k < n(T )− 1, set m = m(T ), ∆ = ∆(T ), and consider the

following two functions de�ned for positive integers n = n(T ) and k:

f(n, k) =
n2 − k2

4
,

g(n, k) =
n∆(∆− k)

2∆− k
, ∆ = mk + 1, m ∈ N.

The equality between f and g occurs precisely when n = 2∆ − k. Since ∆ = mk + 1,

for some m ∈ N, this equality point can be expressed as neq = (2m− 1)k + 2.

To compare the size of the two functions, we observe the following cases:

� For n < 2∆− k, the quadratic growth of g dominates, so f(n, k) < g(n, k).

� For n = 2∆− k, the two functions coincide, therefore f(n, k) = g(n, k).

� For n > 2∆− k, the quadratic growth of f dominates, so f(n, k) > g(n, k).

3 Bounds on Zagreb (co)indices

Zagreb indices represent one of the most fundamental classes of topological descriptors

in mathematical chemistry, with their properties being extensively investigated since
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the introduction of the �rst Zagreb index M1 in 1972 [21]. M1 and its variant, the

second Zagreb index M2, are de�ned for a given graph G as

M1(G) =
∑

uv∈E(G)

(
d(u) + d(v)

)
,

M2(G) =
∑

uv∈E(G)

d(u)d(v) .

A huge number of lower and upper bounds for M1 and M2 have been proved, the

survey [12] which focuses just on lower and upper bounds for M1 and M2 contains more

than 80 pages and lists 118 references. In this section we add to this list bounds on M1

and M2 for k-SI graphs, as well as bounds on the corresponding Zagreb coincides [17]

which are de�ned by:

M1(G) =
∑

uv/∈E(G)

(
d(u) + d(v)

)
,

M2(G) =
∑

uv/∈E(G)

d(u)d(v) .

Theorem 3.1 If k ≥ 1 and G is a connected k-SI graph, then

(k + 2)(n(G)− 1) ≤ M1(G) ≤ n(G)
n(G)2 − k2

4

and

(k + 1)(n(G)− 1) ≤ M2(G) ≤
(
n(G)2 − k2

4

)2

.

Moreover, in both cases the left equality holds if and only if G ∼= K1,k+1 and the right

equality holds if and only if G ∼= Kn(G)+k
2

,
n(G)−k

2

.

Proof. We �rst consider M1. Since d(u) + d(v) ≥ k + 2 for each edge uv, we have:

M1(G) =
∑

uv∈E(G)

(
d(u) + d(v)

)
≥ (k + 2)m(G) .

Since G is connected, m(G) ≥ n(G)−1, hence the left inequality. Further, the equality

holds if and only if G is a k-SI tree and for each edge uv we have |d(u)− d(v)| = k and
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d(u) + d(v) = k + 2. Therefore, d(u) = k + 1 and d(v) = 1 (or the other way around),

which in turn implies G ∼= K1,k+1.

Let uv be an edge of G and assume without loss of generality that d(u)− d(v) = k.

Lemma 1.1 implies d(u) + d(v) ≤ n(G). From here, we get d(u) ≤ n(G)+k
2

and d(v) ≤
n(G)−k

2
and therefore,

M1(G) =
∑

uv∈E(G)

(
d(u) + d(v)

)
≤ n(G)m(G) .

Then, by Theorem 2.1, M1(G) ≤ n(G) (n(G)2−k2)
4

, where the equality holds if and only

if G ∼= Kn(G)+k
2

,
n(G)−k

2

. This proves the theorem for M1.

Consider now M2 and let uv be an edge of G with d(u) > d(v). Then as in (i) we

have d(u) + d(v) ≤ n(G) and d(u)− d(v) = k. The latter equality yields

d(u)d(v) = d(u)(d(u)− k) .

Since the function f(x) = x2− kx is an increasing function on x ≥ k/2, by considering

k + 1 ≤ d(u) ≤ n(G)+k
2

we get

(k + 1)(k + 1− k)m(G) ≤ M2(G) ≤
(
n(G) + k

2

)(
n(G) + k

2
− k

)
m(G) .

Therefore, by Theorem 2.1,

(k + 1)(n(G)− 1) ≤ M2(G) ≤
(
(n(G)2 − k2)

4

)2

.

By similar arguments as for M1 we �nally infer that the left equality holds if and only

if G ∼= K1,k+1 and the right equality holds if and only if G ∼= K1,k+1. □

To derive bounds for the two Zagreb coindices, we recall the following result.

Theorem 3.2 [20] If G is a graph, then

M1(G) = 2m(G)(n(G)− 1)−M1(G)

and

M2(G) = 2m2(G)− 1

2
M1(G)−M2(G) .
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The bounds for the Zagreb coindices of k-SI graphs now read as follows.

Theorem 3.3 If k ≥ 1 and G is a k-SI graph� with n = n(G) and m = m(G), then

(n− 2)(n− 1) ≤ M1(G) ≤ (2n− k − 4)

(
n2 − k2

4

)
and

2m2 − m

4

(
2n+ n2 − k2

)
≤ M2(G) ≤ 2m2 − (n− 1)

(
3

2
k + 2

)
.

Moreover, for M1, both equalities hold if and only if G ∼= K1,k+1, while the left equality

for M2 holds if and only if G ∼= Kn+k
2

,n−k
2
, and the right equality for M2 holds if and

only if G ∼= K1,k+1.

Proof. Consider �rst M1. Since for each edge uv we have d(u) + d(v) ≤ n(G), we get

M1(G) ≤ n(G)m(G). Then by the �rst equality of Theorem 3.2,

M1(G) = 2(n(G)− 1)m(G)−M1(G)

≥ 2(n(G)− 1)m(G)− n(G)m(G) = (n(G)− 2)m(G) .

G, being connected, satis�es m(G) ≥ n(G)− 1, hence

M1(G) ≥ (n(G)− 2)(n(G)− 1) .

Equality holds if and only if G is a star graph, which is the case when m(G) = n(G)−1

and M1(G) = n(G)m(G).

For the upper bound, using the bound M1(G) ≥ (k + 2)m(G) of Theorem 3.1, we

get

M1(G) ≤ 2(n(G)− 1)m(G)− (k + 2)m(G) = m(G)(2n(G)− k − 4) .

Hence the right inequality holds by the upper bound in Theorem 2.1. Equality holds

if and only if G is both a tree and a complete bipartite graph, which occurs precisely

when G ∼= K1,k+1.

Consider second M2. Applying Lemma 1.1 again to an arbitrary edge uv we have

d(u) + d(v) ≤ n(G) and d(u)d(v) ≤ n(G)2 − k2

4
. (3)
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This implies M1(G) ≤ n(G)m(G) and M2(G) ≤ n(G)2−k2

4
m(G). Applying the second

identity of Theorem 3.2, we get

M2(G) ≥ 2m2(G)− 1

2
n(G)m(G)− n(G)2 − k2

4
m(G)

= 2m2(G)−m(G)
n(G)2 + 2n(G)− k2

4
.

The equality holds if and only if both equalities in (3) hold for each edge, which is if

and only if G is the complete bipartite graph Kn(G)+k
2

,
n(G)−k

2

.

By Theorem 3.1,

M1(G) ≥ (k + 2)(n(G)− 1) and M2(G) ≥ (k + 1)(n(G)− 1) .

Hence the right inequality is obtained by applying the second identity of Theorem 3.2:

M2(G) ≤ 2m(G)2 − 1

2
(n(G)− 1)(k + 2)− (n(G)− 1)(k + 1) ,

and the equality holds if and only if G ∼= K1,k+1. □

4 Bounds on the Sombor and the Randi¢ index

The Sombor index of a graph G, introduced by Gutman in 2021 in [19], is de�ned as

SO(G) =
∑

uv∈E(G)

√
d(u)2 + d(v)2 .

This graph invariant immediately received considerable attention, only a year after the

seminal paper the survey paper [22] on it was published. The extraordinary interest in

the Sombor index continues unabated, see, for example [3, 14, 24]. To this development

we add the following result.

Theorem 4.1 If k ≥ 1 and G is a k-SI graph, then

(k + 1)
√

(k + 1)2 + 1 ≤ SO(G) ≤
(
n(G)2 − k2

4

)√
n(G)2 + k2

2
.

Moreover, the left equality holds if and only if G ∼= K1,k+1 and the right equality holds

if and only if G ∼= Kn+k
2

,n−k
2
.
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Proof. Let uv be an edge of G where d(u)− d(v) = k. Thus

d(u)2 + d(v)2 = 2d(u)2 − 2kd(u) + k2 .

The function f(x) = 2x2 + k2 − 2kx is an increasing function for x ≥ k
2
. Since

k + 1 ≤ d(u) ≤ n(G)+k
2

, we derive the bounds:

m(G)
√

(k + 1)2 + 1 ≤ SO(G) ≤ m(G)

√(
n(G) + k

2

)2

+

(
n(G)− k

2

)2

.

Applying Theorem 2.1, the upper bound follows, while the lower bound follows since

m(G) ≥ n(G)− 1 ≥ (k + 2)− 1 = k + 1. Moreover, the left equality holds if and only

if m(G) = n(G)− 1 = k + 1 and for each edge one endvertex is of degree k + 1. This

implies G ∼= K1,k+1. A similar argument applies to the sharpness of the upper bound.

□

The Randi¢ index [23] is one of the oldest and most widely applicable topological

indices, it is de�ned as follows:

R(G) =
∑

uv∈E(G)

1√
d(u)d(v)

.

Also this index is still the subject of considerable interest; see, for example, articles [10,

25, 26] and the references therein. Our contribution is the following result.

Theorem 4.2 If k ≥ 1 and G is a k-SI graph, then

2(k + 1)√
n(G)2 − k2

≤ R(G) ≤ n(G)2 − k2

4
√
k + 1

.

Moreover, both equalities hold if and only if G ∼= K1,k+1.

Proof. Let uv be an edge of G, and assume without loss of generality that d(u)−d(v) =

k. Using analogous arguments as in the second part of the proof of Theorem 3.1, that

is, to prove the bounds on M2(G), we obtain

k + 1 ≤ d(u)d(v) ≤ n(G) + k

2
· n(G)− k

2
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This implies

m(G)
1√

n(G)2−k2

4

≤ R(G) ≤ m(G)
1√
k + 1

.

Since m(G) ≥ k + 1, the lower bound follows, while the upper bound follows by the

reuse of Theorem 2.1. We also notice that both the lower and the upper bound are

sharp and the equalities hold when G ∼= K1,k+1. □
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